Уважаемые пользователи!

Данный сайт содержит информацию для людей с медицинским образованием и специалистов здравоохранения.
Входя на сайт, Вы подтверждаете свое согласие с Условиями использования и Политикой конфиденциальности.

Dear visitor!
This site contains medical information for healthcare professionals.
You can go further, if you agree with Terms and Conditions and Privacy Policy on this site.

The effect of vanadium compounds on carbohydrate and lipid metabolism disorders

Cover Page
Open Access Open Access
Restricted Access Subscription Access


At this stage in the development of nutriciological science, it has not been established if biologically active substances are essential to the human body; however, an explanation of the physiological role of minor biologically active substances is necessary to clarify the qualitative composition of Nutrioma. Of particular interest is the transition metal, vanadium. Adding vanadium to the diet of animals with induced or genetically determined type 2 diabetes mellitus normalizes glucose and blood insulin levels, reduces insulin resistance, promotes β-cell regeneration, and has a beneficial effect on lipid metabolism. Clinical studies of the effectiveness of vanadium are not convincing, in most part, because of their insufficient duration. The review briefly discusses the main mechanisms of the action of vanadium compounds. Therapeutic doses of vanadium compounds may overlap with toxic doses. Organic vanadium compounds could be used in significantly lower doses. The main problem with the possible use of vanadium compounds in antidiabetic therapy is the balance between their beneficial effects and the connected risks of side effects.

Yuliya S. Sidorova

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Author for correspondence.
Email: sidorovaulia28@mail.ru
ORCID iD: 0000-0002-2168-2659
SPIN-code: 1978-7905
Scopus Author ID: 55452269800

Russian Federation, 109240, Moscow, Ustyinsky proezd, 2/14


Margarita G. Skalnaya

RUDN University

Email: skalnaya@yandex.ru
ORCID iD: 0000-0003-1099-2560
SPIN-code: 7079-4874

Russian Federation, 6, Miklukho-Maklaya street, Moscow, 117198

MD, PhD, professor

Aleksey A. Tinkov

RUDN University; P.G. Demidov State University of Yaroslavl

Email: tinkov.a.a@gmail.com
ORCID iD: 0000-0003-0348-6192
SPIN-code: 3329-3442

Russian Federation, 6, Miklukho-Maklaya street, Moscow, 117198; 14, Sovetskaya street,Yaroslavl, 150003


Vladimir K. Mazo

Federal Research Centre of Nutrition, Biotechnology and Food Safety

Email: mazo@ion.ru
ORCID iD: 0000-0002-3237-7967
SPIN-code: 4142-4720

Russian Federation, 109240, Moscow, Ustyinsky proezd, 2/14

PhD, professor

  1. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. Washington, DC: National Academies Press; 2001. 800 p. doi: https://doi.org/10.17226/10026
  2. Shechter Y. Historic perspective and recent developments on the insulin-like actions of vanadium; toward developing vanadium-based drugs for diabetes. Coord Chem Rev. 2003;237(1-2):3-11. doi: https://doi.org/10.1016/S0010-8545(02)00302-8
  3. Arya GS, Hedaytullah MD, Yadav RA, Sachan K. Treating diabetes mellitus with vanadium salts – a future prospectus: a review. Int J Pharm Sci Rev Res. 2011;8(2):183-185.
  4. Huang M, Wu Y, Wang N, et al. Is the hypoglycemic action of vanadium compounds related to the suppression of feeding? Biol Trace Elem Res. 2014;157(3):242-248. doi: https://doi.org/10.1007/s12011-013-9882-6
  5. Rehder D. The future of/for vanadium. Dalt Trans. 2013;42(33): 11749-11761. doi: https://doi.org/10.1039/c3dt50457c
  6. Rehder D. Biological and medicinal aspects of vanadium. Inorg Chem Commun. 2003;6(5):604-617. doi: https://doi.org/10.1016/S1387-7003(03)00050-9
  7. Cakir Y, Yildiz D. Efflux of glutathione and glutathione complexes from human erythrocytes in response to vanadate. Blood Cells Mol Dis. 2013;50(1):1-7. doi: https://doi.org/10.1016/j.bcmd.2012.07.001
  8. Sanna D, Ugone V, Pisano L, et al. Behavior of the potential antitumor V(IV)O complexes formed by flavonoid ligands. 2. Characterization of sulfonate derivatives of quercetin and morin, interaction with the bioligands of the plasma and preliminary biotransformation studies. J Inorg Biochem. 2015;153:167-177. doi: https://doi.org/10.1016/j.jinorgbio.2015.07.018
  9. Rehder D. The role of vanadium in biology. Metallomics. 2015;7(5): 730-742. doi: https://doi.org/10.1039/C4MT00304G
  10. Pessoa JC, Tomaz I. Transport of therapeutic vanadium and ruthenium complexes by blood plasma components. Curr Med Chem. 2010;17(31):3701-3738. doi: https://doi.org/10.2174/092986710793213742
  11. Willsky GR, Halvorsen K, Godzala ME 3rd, et al. Coordination chemistry may explain pharmacokinetics and clinical response of vanadyl sulfate in type 2 diabetic patients. Metallomics. 2013;5(11):1491-1502. doi: https://doi.org/10.1039/c3mt00162h
  12. Boulassel B, Sadeg N, Roussel O, et al. Fatal poisoning by vanadium. Forensic Sci Int. 2011;206(1-3):e79-e81. doi: https://doi.org/10.1016/j.forsciint.2010.10.027
  13. Wang YX, Chen HG, Li XD, et al. Concentrations of vanadium in urine and seminal plasma in relation to semen quality parameters, spermatozoa DNA damage and serum hormone levels. Sci Total Environ. 2018;645:441-448. doi: https://doi.org/10.1016/j.scitotenv.2018.07.137
  14. Yang X. Membrane transport of vanadium compounds and the interaction with the erythrocyte membrane. Coord Chem Rev. 2003;237(1-2):103-111. doi: https://doi.org/10.1016/S0010-8545(02)00247-3
  15. Capella MA, Capella LS, Valente RC, et al. Vanadate-induced cell death is dissociated from H2O2 generation. Cell Biol Toxicol. 2007;23(6):413-420. doi: https://doi.org/10.1007/s10565-007-9003-4
  16. Meng FG, Zhang ZY. Redox regulation of protein tyrosine phosphatase activity by hydroxyl radical. Biochim Biophys Acta. 2013;1834(1):464-469. doi: https://doi.org/10.1016/j.bbapap.2012.06.018
  17. Rehder D. The potentiality of vanadium in medicinal applications. Future Med Chem. 2012;4(14):1823-1837. doi: https://doi.org/10.4155/fmc.12.103
  18. Niu X, Xiao R, Wang N, et al. The molecular mechanisms and rational design of anti-diabetic vanadium compounds. Curr Top Med Chem. 2016;16(8):811-822. doi: https://doi.org/10.2174/1568026615666150827094652
  19. Jakusch T, Kiss T. In vitro study of the antidiabetic behavior of vanadium compounds. Coord Chem Rev. 2017;351:118-126. doi: https://doi.org/10.1016/j.ccr.2017.04.007
  20. Yoshikawa Y, Sakurai H, Crans DC, et al. Structural and redox requirements for the action of anti-diabetic vanadium compounds. Dalt Trans. 2014;43(19):6965-6972. doi: https://doi.org/10.1039/C3DT52895B
  21. Jiang P, Dong Z, Ma B, et al. Effect of vanadyl rosiglitazone, a new insulin-mimetic vanadium complexes, on glucose homeostasis of diabetic mice. Appl Biochem Biotechnol. 2016;180(5):841-851. doi: https://doi.org/10.1007/s12010-016-2137-1
  22. Adam AM, Naglah AM, Al-Omar MA, Refat MS. Synthesis of a new insulin-mimetic anti-diabetic drug containing vitamin A and vanadium(IV) salt: chemico-biological characterizations. Int J Immunopathol Pharmacol. 2017;30(3):272-281. doi: https://doi.org/10.1177/0394632017719601
  23. Pillai SI, Subramanian SP, Kandaswamy M. A novel insulin mimetic vanadium-flavonol complex: synthesis, characterization and in vivo evaluation in STZ-induced rats. Eur J Med Chem. 2013;63:109-117. doi: https://doi.org/10.1016/j.ejmech.2013.02.002
  24. Mehdi MZ, Pandey SK, Théberge JF, Srivastava AK. Insulin signal mimicry as a mechanism for the insulin-like effects of vanadium. Cell Biochem Biophys. 2006;44(1):73-81. doi: https://doi.org/10.1385/CBB:44:1:073
  25. Xie M, Chen D, Zhang F, et al. Effects of vanadium (III, IV, V)-chlorodipicolinate on glycolysis and antioxidant status in the liver of STZ-induced diabetic rats. J Inorg Biochem. 2014;136:47-56. doi: https://doi.org/10.1016/j.jinorgbio.2014.03.011
  26. Bin-Jaliah I. Modulatory effect of concomitant administration of insulin and vanadium on inflammatory biomarkers in type 2 diabetic rats: role of adiponectin. Chin J Physiol. 2018;61(1):42-49. doi: https://doi.org/10.4077/CJP.2018.BAG523
  27. Ahmed El-Shazly S, Ahmed MM, Ibrahim ZS, Refat MS. Synthesis, characterization, and efficacy evaluation of a new anti-diabetic vanadyl(II) thiamine hydrochloride complex in streptozotocin-induced diabetic rats. Int J Immunopathol Pharmacol. 2015;28(2):227-239. doi: 10.1177/0394632015576036
  28. El Karib AO, Al-Ani B, Al-Hashem F, et al. Insulin and vanadium protect against osteoarthritis development secondary to diabetes mellitus in rats. Arch Physiol Biochem. 2016;122(3):148-154. doi: https://doi.org/10.3109/13813455.2016.1159698
  29. Mohammadi MT, Pirmoradi L, Mesbah F, et al. Trophic actions of oral vanadium and improved glycemia on the pancreatic beta-cell ultrastructure of streptozotocin-induced diabetic rats. JOP. 2014;15(6):591-596. doi: https://doi.org/10.6092/1590-8577/2855
  30. Hussain Shah SZ, Naveed AK, Rashid A. Effects of oral vanadium on glycaemic and lipid profile in rats. J Pak Med Assoc. 2016; 66(12):1592-1596
  31. Yilmaz-Ozden T, Kurt-Sirin O, Tunali S, et al. Ameliorative effect of vanadium on oxidative stress in stomach tissue of diabetic rats. Bosn J basic Med Sci. 2014;14(2):105-109. doi: https://doi.org/10.17305/bjbms.2014.2273
  32. Pirmoradi L, Noorafshan A, Safaee A, Dehghani GA. Quantitative assessment of proliferative effects of oral vanadium on pancreatic islet volumes and beta cell numbers of diabetic rats. Iran Biomed J. 2016;20(1):18-25.
  33. Ippolito JA, Krell ES, Cottrell J, et al. Effects of local vanadium delivery on diabetic fracture healing. J Orthop Res. 2017;35(10):2174-2180. doi: https://doi.org/10.1002/jor.23521
  34. Missaoui S, Ben Rhouma K, Yacoubi MT, et al. Vanadyl sulfate treatment stimulates proliferation and regeneration of beta cells in pancreatic islets. J Diabetes Res. 2014;2014:540242. doi: https://doi.org/10.1155/2014/540242
  35. Wasan KM, Risovic V, Yuen VG, McNeill JH. Differences in plasma homocysteine levels between Zucker fatty and Zucker diabetic fatty rats following 3 weeks oral administration of organic vanadium compounds. J Trace Elem Med Biol. 2006;19(4):251-258. doi: https://doi.org/10.1016/j.jtemb.2005.10.001
  36. Pelletier J, Domingues N, Castro MM, Östenson CG. In vitro effects of bis(1,2-dimethyl-3-hydroxy-4-pyridinonato)oxidovanadium(IV), or VO(dmpp)2, on insulin secretion in pancreatic islets of type 2 diabetic Goto-Kakizaki rats. J Inorg Biochem. 2016;154:29-34. doi: https://doi.org/10.1016/j.jinorgbio.2015.11.004
  37. Jiang P, Dong Z, Ma B, et al. Effect of vanadyl rosiglitazone, a new insulin-mimetic vanadium complexes, on glucose homeostasis of diabetic mice. Appl Biochem Biotechnol. 2016;180(5):841-851. doi: https://doi.org/10.1007/s12010-016-2137-1
  38. Thompson KH, Orvig C. Vanadium in diabetes: 100 years from Phase 0 to Phase I. J Inorg Biochem. 2006;100(12):1925-1935. doi: https://doi.org/10.1016/j.jinorgbio.2006.08.016
  39. Thompson KH, Lichter J, LeBel C, et al. Vanadium treatment of type 2 diabetes: a view to the future. J Inorg Biochem. 2009;103(4):554-558. doi: https://doi.org/10.1016/j.jinorgbio.2008.12.003
  40. Marzban L, McNeill JH. Insulin-like actions of vanadium: potential as a therapeutic agent. J Trace Elem Exp Med. 2003;16(4):253-267. doi: https://doi.org/10.1002/jtra.10034
  41. Mohammad AA, Mahdi K, Seid MM, Forough N. Effect of sodium metavanadate supplementation on lipid and glucose metabolism biomarkers in type 2 diabetic patients. Malays J Nutr. 2008;14(1):113-119.
  42. Soveid M, Dehghani GA, Omrani GR. Long-term efficacy and safety of vanadium in the treatment of type 1 diabetes. Arch Iran Med. 2013;16(7):408-411.
  43. Tinkov AA, Popova EV, Polyakova VS, et al. Adipose tissue chromium and vanadium disbalance in high-fat fed Wistar rats. J Trace Elem Med Biol. 2015;29:176-181. doi: https://doi.org/10.1016/j.jtemb.2014.07.006
  44. Tinkov AA, Sinitskii AI, Popova EV, et al. Alteration of local adipose tissue trace element homeostasis as a possible mechanism of obesity-related insulin resistance. Med Hypotheses. 2015;85(3):343-347. doi: https://doi.org/10.1016/j.mehy.2015.06.005
  45. Crans DC. Chemistry and insulin-like properties of vanadium(IV) and vanadium(V) compounds. J Inorg Biochem. 2000;80(1-2):123-131. doi: https://doi.org/10.1016/s0162-0134(00)00048-9
  46. Cam MC, Brownsey RW, McNeill JH. Mechanisms of vanadium action: insulin-mimetic or insulin-enhancing agent? Can J Physiol Pharmacol. 2000;78(10):829-847. doi: https://doi.org/10.1139/y00-053
  47. Mohammad A, Sharma V, McNeill JH. Vanadium increases GLUT4 in diabetic rat skeletal muscle. Mol Cell Biochem. 2002; 233(1-2):139-143.
  48. Sun Q, Sekar N, Goldwaser I, et al. Vanadate restores glucose 6-phosphate in diabetic rats: a mechanism to enhance glucose metabolism. Am J Physiol Metab. 2000;279(2):E403-E410. doi: https://doi.org/10.1152/ajpendo.2000.279.2.E403
  49. Gross B, Pawlak M, Lefebvre P, Staels B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol. 2017;13(1):36-49. doi: https://doi.org/10.1038/nrendo.2016.135
  50. Tsave O, Yavropoulou MP, Kafantari M, et al. Comparative assessment of metal-specific adipogenic activity in zinc and vanadium-citrates through associated gene expression. J Inorg Biochem. 2018;186:217-227. doi: https://doi.org/10.1016/j.jinorgbio.2018.04.020
  51. Zhao P, Yang X. Vanadium compounds modulate PPARγ activity primarily by increasing PPARγ protein levels in mouse insulinoma NIT-1 cells. Metallomics. 2013;5(7):836-843. doi: https://doi.org/10.1039/c3mt20249f
  52. Kim TH, Kim MY, Jo SH, et al. Modulation of the transcriptional activity of peroxisome proliferator-activated receptor gamma by protein-protein interactions and post-translational modifications. Yonsei Med J. 2013;54(3):545-559. doi: https://doi.org/10.3349/ymj.2013.54.3.545
  53. Wu Y, Huang M, Zhao P, Yang X. Vanadylacetylacetonate upregulates PPARγ and adiponectin expression in differentiated rat adipocytes. J Biol Inorg Chem. 2013;18(6):623-631. doi: https://doi.org/10.1007/s00775-013-1007-3
  54. Kioseoglou E, Petanidis S, Gabriel C, Salifoglou A. The chemistry and biology of vanadium compounds in cancer therapeutics. Coord Chem Rev. 2015;301-302:87-105. doi: https://doi.org/10.1016/j.ccr.2015.03.010
  55. Scior T, Guevara-Garcia J, Do QT, et al. Why antidiabetic vanadium complexes are not in the pipeline of “Big Pharma” drug research? A critical review. Curr Med Chem. 2016;23(25):2874-2891. doi: https://doi.org/10.2174/0929867323666160321121138
  56. Scior T, Guevara-García A, Bernard P, et al. Are vanadium compounds drugable? Structures and effects of antidiabetic vanadium compounds: a critical review. Mini Rev Med Chem. 2005;5(11):995-1008. doi: https://doi.org/10.2174/138955705774575264
  57. Kiersztan A, Winiarska K, Drozak J, et al. Differential effects of vanadium, tungsten and molybdenum on inhibition of glucose formation in renal tubules and hepatocytes of control and diabetic rabbits: beneficial action of melatonin and N-acetylcysteine. Mol Cell Biochem. 2004;261(1-2):9-21. doi: https://doi.org/10.1023/b:mcbi.0000028733.88718.c3
  58. Hosseini MJ, Seyedrazi N, Shahraki J, Pourahmad J. Vanadium induces liver toxicity through reductive activation by glutathione and mitochondrial dysfunction. Adv Biosci Biotechnol. 2012;3(8):1096-1103. doi: https://doi.org/10.4236/abb.2012.38134
  59. Domingo JL, Gomez M, Sanchez DJ, et al. Toxicology of vanadium compounds in diabetic rats: the action of chelating agents on vanadium accumulation. Mol Cell Biochem. 1995;153(1-2):233-240. doi: https://doi.org/10.1007/bf01075942

Supplementary files

There are no supplementary files to display.


Abstract - 277

PDF (Russian) - 1

Remote (Russian) - 16



Copyright (c) 2019 Sidorova Y.S., Skalnaya M.G., Tinkov A.A., Mazo V.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies