Expression of plasma microRNA in patients with acromegaly

Open Access Open Access
Restricted Access Subscription Access

Abstract


Background: microRNA is a class of small non-coding RNA molecules involved in posttranscriptional regulation of gene expression. MicroRNAs are detectable in blood in stable concentrations, which makes them promising biomarkers for various diseases. 

Aim: to assess plasma microRNA expression in patients with active acromegaly compared with healthy controls.

Material and methods: single-center, case-control study: assessment of plasma microRNA in patients with acromegaly compared with healthy controls. Fasting blood samples were drawn from the participants and centrifuged at +5°С temperature and 3000 rpm for 20 minutes, then aliquoted and frozen at -80°C until further analysis. MicroRNA extraction and library preparation was done according to manufacturer’s instructions. Expression analysis was performed on NextSeq sequencer. Bioinformatic analysis using atropos (adapted deletion), STAR (aligning), FastQC (quality control), seqbuster/seqcluster/miRge2 (microRNA annotation, isomiR and new microRNA search, expression analysis). Primary endpoint of the study – differential expression of plasma microRNA in patients with acromegaly compared with healthy controls.

Results: we included 12 patients with acromegaly – age 33,1 (20;47), BMI 29,3 kg/m2 (24.0;39,6), IGF-1 686,10 ng/mL (405,90;1186,00) and 12 healthy subjects – age 36,2 (26;44), BMI 26,7 kg/m2 (19.5;42,5), IGF-1 - 210,40 нг/мл (89,76;281,90); gender ratio for both groups – 4 males, 8 females. The groups did not differ in gender (p=0.666), age (p=0.551) and BMI (p=0.378). We found decreased expression of four microRNAs in patients with acromegaly: miR-4446-3p -1.317 (p=0.001), miR-215-5p -3.040 (p=0.005), miR-342-5p -1.875 (p=0.013) and miR-191-5p - 0.549 (p=0.039). However, none of these changes were statistically significant after adjustment for multiple comparisons (q>0.1).

Conclusion: we found four microRNAs, which could potentially be downregulated in plasma of patients with acromegaly. The result need to be validated using different measurement method with larger sample size.


Alexander S. Lutsenko

Endocrinology Research Centre, Moscow

Author for correspondence.
Email: some91@mail.ru
ORCID iD: 0000-0002-9314-7831
SPIN-code: 4037-1030

Russian Federation, 11 Dmitriya Ulyanova street, 117036 Moscow, Russia

Zhanna E. Belaya

Endocrinology Research Centre, Moscow

Email: jannabelaya@gmail.com
ORCID iD: 0000-0002-6674-6441
SPIN-code: 4746-7173

Russian Federation

MD, PhD

Elena G. Przhiyalkovskaya

Endocrinology Research Centre, Moscow

Email: przhiyalkovskaya.elena@gmail.com
ORCID iD: 0000-0001-9119-2447
SPIN-code: 9309-3256

Russian Federation

MD, PhD

Alexey G. Nikitin

Pulmonology Scientific Research Institute under FMBA of Russia. Moscow

Email: avialn@gmail.com
ORCID iD: 0000-0001-9762-3383
SPIN-code: 3367-0680

Russian Federation

PhD

Philipp A. Koshkin

Center of medical genetics «Genomed», Moscow

Email: philipkoshkin@gmail.com
ORCID iD: 0000-0001-9512-9277
SPIN-code: 5627-2121

Russian Federation

PhD

Anastasia M. Lapshina

Endocrinology Research Centre, Moscow

Email: nottoforget@yandex.ru
ORCID iD: 0000-0003-4353-6705
SPIN-code: 1582-5033

Russian Federation

MD, PhD

Patimat M. Khandaeva

Endocrinology Research Centre, Moscow

Email: pati_khandaeva@mail.ru
ORCID iD: 0000-0002-6993-5096
SPIN-code: 6950-5200

Russian Federation

Galina A. Mel'nichenko

Endocrinology Research Centre, Moscow

Email: teofrast2000@mail.ru
ORCID iD: 0000-0002-5634-7877
SPIN-code: 8615-0038

Russian Federation

MD, PhD, professor, fellow of the Russian Academy of Sciences

  • Lavrentaki A, Paluzzi A, Wass JAH, Karavitaki N. Epidemiology of acromegaly: review of population studies. Pituitary. 2017;20(1):4-9. doi: https://doi.org/10.1007/s11102-016-0754-x.
  • Pivonello R, Auriemma RS, Grasso LFS, et al. Complications of acromegaly: cardiovascular, respiratory and metabolic comorbidities. Pituitary. 2017;20(1):46-62. doi: https://doi.org/10.1007/s11102-017-0797-7.
  • Melmed S, Bronstein MD, Chanson P, et al. A Consensus Statement on acromegaly therapeutic outcomes. Nat Rev Endocrinol. 2018;14(9):552-561. doi: https://doi.org/10.1038/s41574-018-0058-5.
  • Sherlock M, Woods C, Sheppard MC. Medical therapy in acromegaly. Nat Rev Endocrinol. 2011;7(5):291-300. doi: https://doi.org/10.1038/nrendo.2011.42.
  • Sohel MH. Extracellular/Circulating MicroRNAs: Release Mechanisms, Functions and Challenges. Achiev Life Sci. 2016;10(2):175-186. doi: https://doi.org/10.1016/j.als.2016.11.007.
  • Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, Uberti ECD. miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol. 2005;204(1):280-285. doi: https://doi.org/10.1002/jcp.20282.
  • Луценко А.С., Белая Ж.Е., Пржиялковская Е.Г., Мельниченко Г.А. МикроРНК и их значение в патогенезе СТГ-продуцирующих аденом гипофиза // Вестник Российской академии медицинских наук. - 2017. - Т. 72. - №4. - С. 290-298. [Lutsenko AS, Belaya ZE, Przhiyalkovskaya EG, Mel’nichenko GA. MicroRNA: role in GH-secreting pituitary adenoma pathogenesis. Ann Russ Acad Med Sci. 2017;72(4):290-298.(In Russ.)] doi: https://doi.org/10.15690/vramn856.
  • Гребенникова Т.А., Белая Ж.Е., Никитин А.Г., и др. Экспрессия микроРНК, регулирующих костное ремоделирование, в плазме крови у пациентов с акромегалией // Ожирение и метаболизм. - 2017. - Т. 14. - №3. - C. 32-37. [Grebennikova TA, Belaya ZE, Nikitin AG, et al. Expression of microRNA related to bone remodeling regulation in plasma in patients with acromegaly. Obe Metab. 2017;14(3):32-37. (In Russ.)] doi: https://doi.org/10.14341/omet2017332-37.
  • Valassi E, García-Giralt N, Malouf J, et al. Circulating miR-103a-3p and miR-660-5p are associated with bone parameters in patients with controlled acromegaly. Endocr Connect. January 2019:39-49. doi: https://doi.org/10.1530/EC-18-0482.
  • Belaya Z, Grebennikova T, Melnichenko G, et al. Effects of active acromegaly on bone mRNA and microRNA expression patterns. Eur J Endocrinol. 2018;178(4):353-364. doi: https://doi.org/10.1530/EJE-17-0772.
  • Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;13(5):358-369. doi: https://doi.org/10.1038/nrg3198.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: https://doi.org/10.1186/s13059-014-0550-8.
  • Feng Y, Mao Z, Wang X, et al. MicroRNAs and Target Genes in Pituitary Adenomas. Horm Metab Res. 2018;50(3):179-192. doi: https://doi.org/10.1055/s-0043-123763.
  • Farina NH, Ramsey JE, Cuke ME, et al. Development of a predictive miRNA signature for breast cancer risk among high-risk women. Oncotarget. 2017;8(68). doi: https://doi.org/10.18632/oncotarget.22750.
  • Kim BG, Kang S, Han HH, et al. Transcriptome-wide analysis of compression-induced microRNA expression alteration in breast cancer for mining therapeutic targets. Oncotarget. 2016;7(19). doi: https://doi.org/10.18632/oncotarget.8322.
  • Wang J, Tan L, Tan L, et al. Circulating microRNAs are promising novel biomarkers for drug-resistant epilepsy. Sci Rep. 2015;5(1):10201. doi: https://doi.org/10.1038/srep10201.
  • Monterde-Cruz L, Ramírez-Salazar EG, Rico-Martínez G, et al. Circulating miR-215-5p and miR-642a-5p as potential biomarker for diagnosis of osteosarcoma in Mexican population. Hum Cell. 2018;31(4):292-299. doi: https://doi.org/10.1007/s13577-018-0214-1.
  • Vychytilova-Faltejskova P, Merhautova J, Machackova T, et al. MiR-215-5p is a tumor suppressor in colorectal cancer targeting EGFR ligand epiregulin and its transcriptional inducer HOXB9. Oncogenesis. 2017;6(11):399. doi: https://doi.org/10.1038/s41389-017-0006-6.
  • Ahmadi R, Heidarian E, Fadaei R, Moradi N, Malek M, Fallah S. miR-342-5p Expression Levels in Coronary Artery Disease Patients and its Association with Inflammatory Cytokines. Clin Lab. 2018;64(04/2018). doi: https://doi.org/10.7754/Clin.Lab.2017.171208.
  • Yan X, Cao J, Liang L, et al. miR‐342‐5p Is a Notch Downstream Molecule and Regulates Multiple Angiogenic Pathways Including Notch, Vascular Endothelial Growth Factor and Transforming Growth Factor β Signaling. J Am Heart Assoc. 2016;5(2). doi: https://doi.org/10.1161/JAHA.115.003042.
  • Yang H, Li Q, Niu J, et al. microRNA-342-5p and miR-608 inhibit colon cancer tumorigenesis by targeting NAA10. Oncotarget. 2016;7(3). doi: https://doi.org/10.18632/oncotarget.6458.
  • Identification of Thyroid-Associated Serum microRNA Profiles and Their Potential Use in Thyroid Cancer Follow-Up. J Endocr Soc. January 2017. doi: https://doi.org/10.1210/js.2016-1032.
  • Kumar P, Dezso Z, MacKenzie C, et al. Circulating miRNA Biomarkers for Alzheimer’s Disease. Hill AF, ed. PLoS One. 2013;8(7):e69807. doi: https://doi.org/10.1371/journal.pone.0069807.
  • Sharma S, Nagpal N, Ghosh PC, Kulshreshtha R. P53-miR-191- SOX4 regulatory loop affects apoptosis in breast cancer. RNA. 2017;23(8):1237-1246. doi: https://doi.org/10.1261/rna.060657.117.
  • Vistbakka J, Sumelahti M-L, Lehtimäki T, Elovaara I, Hagman S. Evaluation of serum miR-191-5p, miR-24-3p, miR-128-3p, and miR-376c-3 in multiple sclerosis patients. Acta Neurol Scand. 2018;138(2):130-136. doi: https://doi.org/10.1111/ane.12921.
  • Sánchez-Mora C, Soler Artigas M, Garcia-Martínez I, et al. Epigenetic signature for attention-deficit/hyperactivity disorder: identification of miR-26b-5p, miR-185-5p, and miR-191-5p as potential biomarkers in peripheral blood mononuclear cells. Neuropsychopharmacology. 2019;44(5):890-897. doi: https://doi.org/10.1038/s41386-018-0297-0.

Views

Abstract - 85

PDF (Russian) - 8

PlumX

Dimensions


Copyright (c) Lutsenko A.S., Belaya Z.E., Przhiyalkovskaya E.G., Nikitin A.G., Koshkin P.A., Lapshina A.M., Khandaeva P.M., Mel'nichenko G.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies