The activity of NAD-and NADP-dependent dehydrogenases in lymphocytes of peripheral blood in Graves' disease

  • Authors: Дудина M.1,2, Savchenko A.3, Dogadin S.1,2, Gvozdev I.I.4
  • Affiliations:
    1. Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasenetsky
    2. Krasnoyarsk regional clinical hospital
    3. Institute for Medical Problems of the North, Siberian Division, Russian Academy of Sciences
    4. ФГБНУ Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук», обособленное подразделение «НИИ медицинских проблем Севера»
  • URL: https://probl-endojournals.ru/probl/article/view/12310
  • DOI: https://doi.org/10.14341/probl12310
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract


Background. The regulatory effect of thyroid hormones on the metabolism of the immune system cells (activation of oxidative processes, separation of oxidative phosphorylation and increased protein synthesis) depends on their number. Changes in the activity of intracellular enzymes in Graves' disease (GD) can determine the mechanisms of maintaining autoimmune inflammation in relapse of the disease. The exact role of NAD(P)-dependent dehydrogenases in the development and maintenance of immune response in GD is still poorly investigated.

Aims - to study the activity of NAD(P)-dependent dehydrogenases in lymphocytes of peripheral blood in patients with manifestation and relapse of  GD.

Materials and methods. A single-center, cohort, prospective, continuous, observational, open-label, controlled trial was conducted to evaluate the lymphocytes NAD(P)-dependent activity in 151 women with GD and hyperthyroidism, mean age 40,7±13,2, 52 (37,14%), who were on follow-up at the endocrinology center of Krasnoyarsk Regional clinical hospital from 2016 to 2019. The NAD(P)-dependent dehydrogenases activity measured using  biochemiluminescence method.

Results. In patients with newly diagnosed of GD, relative to the control values and levels detected in relapse group we observe the increase of G6PDH and decrease of NADH-LDH.  In GD relapse group compare to the control range in blood lymphocytes decreases the activity of LDH and NADP-ICDH. In patients with newly diagnosed GD, two positive сorrelation were found: between fT3 level and MDG activity (r=0.90, p=0.037), and between fT4 level and NADP-ICDH activity (r=0.82, p=0.007). In patients with relapse of GD positive relationships between the concentration of TSH and the activity of LDH (r=0.73, p=0.039), and MDH (r=0.93, p=0.002), as well as in a pair of fT4 and NADGDH (r=0.70, p=0.036) were revealed.

Conclusion. Changes in the activity of NAD(P)-dependent dehydrogenases in different clinical variants of GD can serve as a fundamentals for further immunological studies to analyze the relationship between the mechanisms of autotolerance loss with the functional and metabolic characteristics of immune cells that determine the level of immunological tension in the manifestation of thyrotoxicosis due to GD, as well as in the prognosis of the disease remission during long-term thyrostatic therapy.


Full Text

About the authors

Margarita Дудина

Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasenetsky;
Krasnoyarsk regional clinical hospital

Author for correspondence.
Email: margo85_@bk.ru
ORCID iD: 0000-0002-2776-927X
SPIN-code: 4854-1926
Scopus Author ID: 57192199094
ResearcherId: C-3168-2019
Mendeley Profile: https://www.mendeley.com/profiles/-290009/
https://krasgmu.ru/index.php?page[common]=user

Russian Federation, 660022, Krasnoyarsk, P.Zeleznyaka street, 1

PhD, Associate Professor of Internal disease department

Andrey Savchenko

Institute for Medical Problems of the North, Siberian Division, Russian Academy of Sciences

Email: aasavchenko@yandex.ru
ORCID iD: 0000-0001-5829-672X
SPIN-code: 3132-8260
Scopus Author ID: 7202769821
ResearcherId: S-5099-2016

Russian Federation, 660022, Россия, г. Красноярск, ул. Партизана Железняка, 3г

MD,  Professor, the Head of Molecular Cell Physiology and Pathology Laboratory 

Sergey Dogadin

Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasenetsky;
Krasnoyarsk regional clinical hospital

Email: sadogadin@gmail.com
ORCID iD: 0000-0002-1709-466X
SPIN-code: 4803-3756
Scopus Author ID: 6506273878
ResearcherId: P-4467-2015
https://krasgmu.ru/index.php?page[common]=user&id=980

Russian Federation, 660022, Krasnoyarsk, P.Zeleznyaka street, 1

MD, professor, the head of  regional Endocrinology center, the chief endocrinologist of the Ministry of Health of the Krasnoyarsk region 

Ivan Igorevich Gvozdev

ФГБНУ Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук», обособленное подразделение «НИИ медицинских проблем Севера»

Email: leshman-mult@mail.ru
ORCID iD: 0000-0002-1041-9871
SPIN-code: 6203-4651
Scopus Author ID: 57191107590
ResearcherId: Q-5966-2016

Russian Federation, 660022, Россия, г. Красноярск, ул. Партизана Железняка, 3г

The Senior Researcher of Molecular Cell Physiology and Pathology Laboratory 

References

  • De Leo S, Lee SY, Braverman LE. Hyperthyroidism. Lancet. 2016;388(10047):906-918.
  • doi: 10.1016/S0140-6736(16)00278-6.
  • Чиркин А.А., Данченко Е.О. Биохимия. – М.: Медицинская литература, 2010. [Chirkin AA, Danchenko EO. Biohimiya. Moscow: Medicinskaya literatura; 2010. ((In Russ).]
  • Jara EL, Muñoz-durango N, llanos C, et al. Modulating the function of the immune system
  • by thyroid hormones and thyrotropin. Immunol Lett. 2017;184:76-83. doi: 10.1016/j.imlet.2017.02.010.
  • Alack K, Krüger K, Weiss A, et al. Aerobic endurance training status affects lymphocyte apoptosis sensitivity by induction of molecular genetic adaptations. Brain Behav Immun. 2019;75:251-257. doi: 10.1016/j.bbi.2018.10.001.
  • Csaba G, Pállinger E. Thyrotropic hormone (TSH) regulation of triiodothyronine (T(3)) concentration in immune cells. Inflamm Res. 2009;58(3):151-154.
  • doi: 10.1007/s00011-008-8076-8.
  • Трошина Е.А., Свириденко Н.Ю., Ванушко В.Э., и др. Федеральные клинические рекомендации Российской ассоциации эндокринологов по диагностике и лечению токсического зоба. // Клиническая и экспериментальная тиреоидология. – 2014. – Т. 10. – №3. – С. 8-19. [Troshina EA, Sviridenko NY, Vanushko VE, et al. Federal clinical recommendations of the Russian Association of Endocrinologists for the diagnosis and
  • treatment of toxic goiter. Clinical and experimental thyroidology. 2014;10(3):8-19. (In Russ.)]
  • Liu L, Lu H, Liu Y, et al. Predicting relapse of Graves’ disease following treatment with antithyroid drugs. Exp Ther Med. 2016;11(4):1443–1458. doi: 10.3892/etm.2016.3058.
  • Czyzewska U, Tylicki A, Siemieniuk M, et al. Changes of activity and kinetics of certain liver and heart enzymes of hypothyroid and T(3)-treated rats. J Physiol Biochem. 2012;68(3):345-351. doi: 10.1007/s13105-012-0146-2.
  • Cавченко А.А. Определение активности NAD(P)-зависимых дегидрогеназ в нейтрофильных гранулоцитах биолюминесцентным методом. // Бюллетень экспериментальной биологии и медицины. – 2015. – Т. 159. – №5. – С. 656-660. [Savchenko AA. Evaluation of NAD(P)-dependent dehydrogenase activities in neutrophilic granulocytes by the bioluminescent method. Bulletin of Experimental Biology and Medicine. 2015;159(5):656-660. (In Russ.)]
  • Peters AL, van Noorden CJ. Single Cell Cytochemistry Illustrated by the Demonstration of Glucose-6-Phosphate Dehydrogenase Deficiency in Erythrocytes. Methods Mol Biol. 2017;1560:3-13. 10.1007/978-1-4939-6788-9_1
  • Bolin AP, Guerra BA, Nascimento SJ, et al. Changes in lymphocyteoxidant/antioxidant parameters after carbonyl and antioxidant exposure. Int Immunopharmacol. 2012;14(4):690-697. doi: 10.1016/j.intimp.2012.10.003.
  • Georgakouli K, Fatouros IG, Draganidis D, et al. Exercise in Glucose-6-Phosphate Dehydrogenase Deficiency: Harmful or Harmless? A Narrative Review. Oxid Med Cell Longev. 2019; 2019:8060193. doi: 10.1155/2019/8060193.
  • Koukourakis MI, Giatromanolaki A. Warburg effect, lactate dehydrogenase, and radio/chemo-therapy efficacy. Int J Radiat Biol. 2019;95(4):408-426.
  • doi: 10.1080/09553002.2018.1490041.
  • Edoyan JK, Hecht L, Zhang S, et al. A novel null mutation in the pyruvate dehydrogenase phosphatase catalytic subunit gene (PDP1) causing pyruvate dehydrogenase complex deficiency. JIMD. 2019;48(1):26-35. doi: 10.1002/jmd2.12054.
  • Laurenti G, Tennant DA. Isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), fumarate hydratase (FH): three players for one phenotype in cancer? Biochem Soc Trans. 2016;44(4):1111-1116. doi: 10.1042/BST20160099.
  • Pan JH, Tang J, Redding MC, et al. Hepatic Transcriptomics Reveals that Lipogenesis Is a Key Signaling Pathway in Isocitrate Dehydrogenase 2 Deficient Mice. Genes (Basel).2019;10(9).pii: E728. doi: 10.3390/genes10090728.
  • Eleftheriadis T, Pissas G, Antoniadi G, et al. Malatedehydrogenase-2 inhibitor LW6 promotes metabolic adaptations and reducesproliferation and apoptosis in activated human T-cells. Exp Ther Med. 2015;10(5):1959-1966. doi: 10.3892/etm.2015.2763.
  • Navarro F, Bacurau AV, Pereira GB, et al. Moderate exercise increases the metabolism and immune function of lymphocytes in rats. Eur J Appl Physiol. 2013;113(5):1343-1352.
  • doi: 10.1007/s00421-012-2554-y.
  • Williams GR. Extrathyroidal expression of TSH receptor. Ann Endocrinol (Paris). 2011;72(2):68-73. doi: 10.1016/j.ando.2011.03.006.
  • Xu R, Huang F, Zhang S, et al. Thyroid function, body mass index, and metabolic risk markers in euthyroid adults: a cohort study. BMC Endocr Disord. 2019;19(1):58.
  • doi: 10.1186/s12902-019-0383-2.

Statistics

Views

Abstract - 249

PDF (Russian) - 0

PDF (Russian) - 0

PlumX

Dimensions


Copyright (c) Дудина M., Savchenko A., Dogadin S., Gvozdev I.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies