Stress of endoplasmic reticulum: the cytological "scenario" of pathogenesis of human diseases

Cover Page


The phenomenon of stress of endoplasmic reticulum (ER) attracts an increasingly higher attention of the researchers. The available data suggest that ER dysfunction is a common component of many human pathologies including oncological diseases and neurodegenerative viral diseases. Stress of ER is of special significance in the cell populations actively secreting proteins because protein folding disturbances play an important role in its development. This fact opens up prospects for the better understanding of pathogenesis of diabetes mellitus and some other diseases. The present work summarizes the current concepts of biochemical mechanisms underlying stress of endoplasmic reticulum and elucidates the key signal pathways for its compensation and proapoptosis.

I I Dedov

O M Smirnova


A S Gorelyshev

  1. Croze E.M., Morre D.J. Isolation of plasma membrane, Golgi apparatus, and endoplasmic reticulum fractions from single homogenates of mouse liver. J Cell Physiol 1984; 119: 46-57.
  2. Dean P.M. Ultrastructural morphometry of the pancreatic Β-cell. Diabetologia 1973; 9: 115-119.
  3. Lavoie C., Paiement J. Topology of molecular machines of the endoplasmic reticulum: a compilation of proteomics and cytological data. Histochem Cell Biol 2008; 129: 117-128.
  4. Powell K., Latterich M. The Making and Breaking of the Endoplasmic Reticulum. Traffic 2000; 1: 689-694.
  5. Anelli T., Sitia R. Protein quality control in the early secretory pathway. EMBO J 2008; 27: 315-327.
  6. Voeltz G., Rolls M., Rapoport T. Structural organization of the endoplasmic reticulum. EMBO Reports 2002;3: 10: 944-950.
  7. Дедов И.И., Войткович А.Л. Эргастоплазма нейросекреторных клеток. Докл. АН СССР 1968; 182: 197-200.
  8. Дедов И.И., Войткович А.Л. Дифференцировка и регенерация на субмикроскопическом уровне. Арх анат 1970; 58: 38-44.
  9. Hayashi T., Rizzuto R., Hajnoczky G., Su T. MAM: more than just a housekeeper. Trends Cell Biol 2009; 19: 2: 81-88.
  10. Hwang C., Sinskey A.J., Lodish H.F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 1992; 257: 1496-1502.
  11. Anfinsen C.B. Principles that govern the folding of protein chains. Science 1973; 181: 223-230.
  12. Petkova A.T., Ishii Y., Balbach J.J., Antzutkin O.N., Leapman R.D., Delaglio F., Tycko R. A structural model for Alzheimer's beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 2002; 99: 16742-16747
  13. Saliba R.S., Munro P.M., Luthert P.J., Cheetham M.E. The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. J Cell Sci 2002; 115: 2907-2918.
  14. Steenbergen W. Alpha 1-antitrypsin deficiency: an overview. Acta Clin Belg 1993; 48: 3: 171-189.
  15. Schleicher S.M., Moretti L., Varki V., Lu B. Progress in the unraveling of the endoplasmic reticulum stress/autophagy pathway and cancer: implications for future therapeutic approaches. Drug Res Update 2010; 13: 3: 79-86.
  16. Luo S., Mao C., Lee B., Lee A.S. GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol Cell Biol 2006; 26: 5688-5697.
  17. Rudiger S., Buchberger A., Bukau B. Interaction of Hsp70 chaperones with substrates. Nat Struct Biol 1997; 4: 342-349.
  18. Ellgaard L., Helenius A. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 2003; 4: 181-191.
  19. Michalak M., Groenendyk J., Szabo E., Gold L.I., Opas M. Calreticulin, a multiprocess calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 2009; 417: 651-666.
  20. Hatahet F., Ruddock L. Protein Disulfide Isomerase: A Critical Evaluation of Its Function in Disulfide Bond Formation. Antioxid Redox Signal 2009; 11: 11.
  21. Enyedi B., Varnai P., Geiszt M. Redox state of the endoplasmic reticulum is controlled by Ero1-L-alpha and intraluminal calcium. Antioxid Redox Signal 2010.
  22. Gross E., Sevier C.S., Heldman N., Vitu E., Bentzur M., Kaiser C.A., Thorpe C., Fass D. Generating disulfides enzymatically: reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. Proc Natl Acad Sci USA 2006; 103: 299-304.
  23. Haynes C.M., Titus E.A., Cooper A.A. Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell 2004; 15: 767-776.
  24. Tsai Y., Weissman A. The Unfolded Protein Response, Degradation from the Endoplasmic Reticulum, and Cancer. Genes Cancer 2010; 1: 7: 764-778.
  25. Eizirik D., Cardozo A., Cnop M. The Role for Endoplasmic Reticulum Stress in Diabetes Mellitus. Endocrine Rev 2008; 29: 1: 42-61.
  26. Marciniak S., Ron D. Endoplasmic Reticulum Stress Signaling in Disease. Physiol Rev 2006; 86: 1133-1149.
  27. Shore G.C., Papa F.R., Oakes S.A. Signaling cell death from the endoplasmic reticulum stress response. Curr Opin Cell Biol 2011; 23: 2: 143-149.
  28. Delepine M., Nicolino M., Barrett T., Golamaully M., Lathrop G.M., Julier C. EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 2000; 25: 406-409.
  29. Julier C., Nicolino M. Wolcott-Rallison syndrome. Orpht J Rare Dis 2010; 5: 29.
  30. Harding H., Zeng H., Zhang Y., Jungreis R., Chung P., Plesken H., Sabatini D., Ron D. Diabetes mellitus and excocrine pancreatic dysfunction in Perk -/- mice reveals a role for translational control in survival of secretory cells. Mol Cell 2001; 7: 1153-1163.
  31. Hinnebusch A.G. Mechanism and regulation of initiator methionyltRNA binding to ribosomes. In: Translational Control of Gene Expression. Eds. N. Sonenberg, J.W.B. Hershey, M.B. Mathews. Cold Spring Harbor - New York: Cold Spring Harbor Laboratory Press 2000; 185-243.
  32. Williams N.P., Hinnebusch A.G., Donahue T.F. Mutations in the structural genes for eukaryotic initiation factors 2 alpha and 2 beta of Saccharomyces cerevisiae disrupt translational control of GCN4 mRNA. Proc Natl Acad Sci USA 1989; 86: 7515-7519.
  33. Berry M.J., Knutson G.S., Lasky S.R., Munemitsu S.M., Samuel C.E. Mechanism of interferon action. Purification and substrate specificities of the double-stranded RNA-dependent protein kinase from untreated and interferon-treated mouse fibroblasts. J Biol Chem 1985; 260: 11240-11247.
  34. Liu S., Suragani R.N., Wang F., Han A., Zhao W., Andrews N.C., Chen J.J. The function of heme-regulated eIF2alpha kinase in murine iron homeostasis and macrophage maturation. J Clin Invest 2007; 117: 11: 3296-3305.
  35. Papa F.R., Zhang C., Shokat K., Walter P. Bypassing a kinase activity with an ATP-competitive drug. Science 2003; 302: 1533-1537.
  36. Deng Y., Humbert S., Liu J.X., Srivastava R., Rothstein S.J., Howell S.H. Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. PNAS 2011; 108: 17: 7247-7252.
  37. Oikawa D., Tokuda M., Iwawaki T. Site-specific cleavage of CD59 mRNA by endoplasmic reticulum-localized ribonuclease, IRE1. Biochem Biophys Res Commun 2007; 360: 122-127.
  38. Iqbal J., Dai K., Seimon T., Jungreis R., Oyadomari M., Kuriakose G., Ron D., Tabas I., Hussain M.M. IRE1beta inhibits chylomicron production by selectively degrading MTP mRNA. Cell Metab 2008; 7: 445-455.
  39. Lipson K.L., Ghosh R., Urano F. The role of IRE1alpha in the degradation of insulin mRNA in pancreatic beta-cells. PLoS ONE 2008; 3: e1648.
  40. Tirasophon W., Lee K., Callaghan B., Welihinda A., Kaufman R.J. The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response. Genes Dev 2000; 14: 2725-2736.
  41. Hollien J., Lin J.H., Li H., Stevens N., Walter P., Weissman J.S. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 2009;186: 3: 323-331.
  42. Boyce M., Bryant K.F., Jousse C., Long K., Harding H.P., Scheuner D., Kaufman R.J, Ma D., Coen D.M., Ron D., Yuan J. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 2005; 307: 935-939.
  43. Qiu H., Hu C., Anderson J., Bjork G.R., Sarker S., Hopper A.K., Hinnebusch A.G. Defects in tRNA processing and nuclear export induce GCN4 translation independently of phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 2000; 20: 2505-2516.
  44. Morris D., Geballe A. Upstream Open Reading Frames as Regulators of mRNA Translation. Mol Cell Biol 2000; 8635-8642.
  45. Harding H., Zhang Y., Zeng H., Novoa I., Lu P., Calfon M., Sadri N., Yun C., Popko B., Paules R., Stojdl D., Bell J., Hettmann T., Leiden J., Ron D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 2003; 11: 619-633.
  46. Brewer J.W., Diehl J.A. PERK mediates cellcycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci USA 2000; 97: 12625-12630.
  47. Cullinan S.B., Zhang D., Hannink M., Arvisais E., Kaufman R.J., Diehl J.A. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 2003; 23: 7198-7209.
  48. Calfon M., Zeng H., Urano F. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002; 415: 92-96.
  49. Lee A.H., Chu G.C., Iwakoshi N.N., Glimcher L.H. XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO J 2005; 24: 4368-4380.
  50. Okada T., Yoshida H., Akazawa R., Negishi M., Mori K. Distinct roles of activating transcription factor 6 (ATF6) and doublestranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J 2002; 366: 585-594.
  51. Ni M., Lee A.S. ER chaperones in mammalian development and human diseases. FEBS Lett 2007; 581: 3641-3651.
  52. Lee K., Tirasophon W., Shen X., Michalak M., Prywes R., Okada T., Yoshida H., Mori K., Kaufman R.J. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 2002; 16: 452-466.
  53. He B., Gross M., Roizman B. The gamma (1)345 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA 1997; 94: 843-848.
  54. Jousse C., Oyadomari S., Novoa I., Lu P.D., Zhang Y., Harding H.P., Ron D. Inhibition of a constitutive translation initiation factor 2a phosphatase, CReP, promotes survival of stressed cells. J Cell Biol 2003; 163: 767-775.
  55. Novoa I., Zhang Y., Zeng H., Jungreis R., Harding H.P., Ron D. Stress-induced gene expression requires programmed recovery from translational repression. EMBO J 2003; 22: 1180-1187.
  56. Urano F., Wang X., Bertolotti A., Zhang Y., Chung P., Harding H.P., Ron D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000; 287: 664-666.
  57. Nishitoh H., Matsuzawa A., Tobiume K., Saegusa K., Takeda K., Inoue K., Hori S., Kakizuka A., Ichijo H. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 2002; 16: 1345-1355.
  58. Kaneko M., Niinuma Y., Nomura Y. Activation signal of nuclear factor-kB in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol Pharm Bull 2003; 26: 931-935.
  59. Hu P., Han Z., Couvillon A.D., Kaufman R.J., Exton J.H. Autocrine tumor necrosis factor-alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1-alpha-mediated NF-kB activation and down-regulation of TRAF2 expression. Mol Cell Biol 2006; 26: 3071-3084.
  60. Yoneda T., Imaizumi K., Oono K., Yui D., Gomi F., Katayama T., Tohyama M. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptorassociated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 2001; 276: 13935-13940.
  61. Oyadomari S., Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 2004; 11: 381-389.
  62. Eizirik D.L., Bjorklund A., Cagliero E. Genotoxic agents increase expression of growth arrest and DNA damage-inducible genes GADD 153 and gadd 45 in rat pancreatic islets. Diabetes 1993; 42: 738-745.
  63. Oyadomari S., Koizumi A., Takeda K., Gotoh T., Akira S., Araki E., Mori M. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest 2002; 109: 525-532.
  64. Cardozo A.K., Ortis F., Storling J., Feng Y.M., Rasschaert J., Tonnesen M., Van Eylen F., Mandrup-Poulsen T., Herchuelz A., Eizirik D.L. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes 2005; 54: 452-461.
  65. Zinszner H., Kuroda M., Wang X., Batchvarova N., Lightfoot R.T., Remotti H., Stevens J.L., Ron D. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 1998; 12: 982-995.
  66. Marciniak S.J., Yun C.Y., Oyadomari S., Novoa I., Zhang Y., Jungreis R., Nagata K., Harding H.P., Ron D. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 2004; 18: 3066-3077.
  67. Oyadomari S., Araki E., Mori M. Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 2002; 7: 335-345.
  68. Herdegen T., Leah J.D. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Brain Res Rev 1998; 28: 370-490.
  69. Davis R. Signal Transduction by the JNK Group Review of MAP Kinases. Cell 2000; 103: 239-252.
  70. Bachar E., Ariav Y., Cerasi E., Kaiser N., Leibowitz G. Neuronal nitric oxide synthase protects the pancreatic beta cell from glucolipotoxicity-induced endoplasmic reticulum stress and apoptosis. Diabetologia 2010; 53: 10: 2177-2187.
  71. Kudo T. Involvement of unfolded protein response in neurodegeneration. Nihon Shinkei Seishin Yakurigaku Zasshi 2003; 23: 3: 105-109.
  72. Wnag H., Takahashi R. Expanding insights on the involvement of endoplasmic reticulum stress in Parkinson's disease. Antioxid Redox Signal 2007; 9: 5: 553-561.
  73. Ling S., Lau E., Al-Shabeeb A., Nikolic A., Catalano A., Iland H., Horvath N., Harrison S., Fleming S., Joshua D., Allen J. Response of myeloma to proteasome inhibitor bortezomib is correlated with unfolded protein response regulator XBP-1. Haematologica 2011.
  74. Guo J., Zhu T., Chen L., Nishioka T., Tsuji T., Xiao Z., Chen C. Differential sensitization of different prostate cancer cells to apoptosis. Genes Cancer 2010; 1: 8: 836-846.
  75. Mahadevan N., Rodvold J., Almanza G., Perez A., Wheeler M., Zanetti M. ER stress drives Lipocalin 2 upregulation in prostate cancer cells in NF-kB-dependent manner. BMC Cancer 2011; 7: 11: 229.
  76. Geraghty P., Wallace A., D'Amiento J., Int J. Induction of the unfolded protein response by cigarette smoke is primarily an activating transcription factor 4-C/EBP homologous protein mediated process. Chron Obstruct Pulmon Dis 2011; 6: 309-319.
  77. Back S.H., Kang S.W., Han J., Chung H.T. Endoplasmic reticulum stress in the Β-cell pathogenesis of type 2 diabetes. Exp Diabet Res 2012; 618396.
  78. van Raalte D.H., Diamant M. Glucolipotoxicity and beta cells in type 2 diabetes mellitus: target for durable therapy? Diabetes Res Clin Pract 2011; 93:Suppl 1: S37-S46.
  79. Karunakaran U., Kim H.J., Kim J.Y., Lee I.K. Guards and culprits in the endoplasmic reticulum: glucolipotoxicity and Β-cell failure in type II diabetes. Exp Diabet Res 2012; 2012: 639762.
  80. Leem J., Koh E.H. Interaction between mitochondria and the endoplasmic reticulum: implications for the pathogenesis of type 2 diabetes mellitus. Exp Diabet Res 2012; 2012: 242984.
  81. González-Chávez A., Elizondo-Argueta S., Gutiérrez-Reyes G., León-Pedroza J.I. Pathophysiological implications between chronic inflammation and the development of diabetes and obesity. Cirulat Cir 2011; 79: 2: 209-216.
  82. Tardif K.D., Mori K., Kaufman R.J., Siddiqui A. Hepatitis C virus suppresses the IRE1-XBP1 pathway of the unfolded protein response. J Biol Chem 2004; 279: 17158-17164.
  83. Bechill J., Chen Z., Brewer J.W., Baker S.C. Coronavirus infection modulates the unfolded protein response and mediates sustained translational repression. J Virol 2008; 82: 4492-4501.
  84. Burnett H.F., Audas T.E., Liang G., Lu R.R. Herpes simplex virus-1 disarms the unfolded protein response in the early stages of infection. Cell Stress Chaperones 2012.
  85. Hassan I.H., Zhang M.S., Powers L.S., Shao J.Q., Baltrusaitis J., Rutkowski D.T., Legge K., Monick M.M. Influenza A Viral Replication Is Blocked by Inhibition of the Inositol-requiring Enzyme 1 (IRE1) Stress Pathway. J Biol Chem 2012; 287: 7: 4679-4689.
  86. Ron D., Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8: 519-529.
  87. Pereira R.C., Stadmeyer L., Marciniak S.J., Ron D., Canalis E. C/EBP homologous protein is necessary for normal osteoblastic function. J Cell Biochem 2005; 97: 633-640.


Abstract - 775




Copyright (c) 2012 Dedov I.I., Smirnova O.M., Gorelyshev A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies