"Intrauterine programming" of hormonal and metabolic processes and intrauterine growth retardation syndrome

Cover Page

Abstract


According to the "intrauterine programming" hypothesis, the fetus responses to nutritional deficiency by adaptation in the form of long-standing changes of metabolism that eventually create predisposition to cardiovascular, metabolic, and endocrine diseases. Up to now, a wealth of catamnestic data have been gathered indicating that individuals having the history of growth retardation in the prenatal period are likely to develop a variety of hormonal and metabolic disorders when they reach their mature age. Specifically, there is the close relationship between the intrauterine growth retardation syndrome and elevated arterial pressure, impaired glucose tolerance, and metabolic syndrome. The present review summarizes the results of epidemiological and experimental studies that confirm the above hypothesis.

E V Nagaeva

Email: nagaeva_ev@mail.ru

T Iu Shiriaeva

  1. Barker D.J., Hales C.N., Fall C.H. et al. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (Syndrome X): relation to reduced fetal growth. Diabetologia 1993;36:1:62-67.
  2. Barker D. The midwife, the coincidence, and the hypothesis. BMJ 2003;327:7429:1428-1430.
  3. Barker D.J., Forsen T., Uutela A. et al. Size at birth and resilience to the effects of poor living conditions in adult life: longitudinal study. BMJ 2001;323:7324:1273-1276.
  4. Barker D.J., Eriksson J.G., Forsen T., Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 2002;31:6:1235-1239.
  5. Barker D.J., Forsen T., Eriksson, J.G., Osmond C. Growth and living conditions in childhood and hypertension in adult life: longitudinal study. J Hypertens 2002;20:10:1951-1956.
  6. Barker D.J., Osmond C. Infant mortality, childhood nutrition and ischaemic heart disease in England and Wales. Lancet 1986;1:8489:1077-1081.
  7. Barker D.J., Winter P.D., Osmond C. Weight in infancy and death from ischaemic heart disease. Lancet 1989;2:8663:577-580.
  8. Syddall H.E., Sayer A.A., Simmonds S.J. et al. Birth weight, infant weight gain and cause-specific mortality: the Hertfordshire Cohort Study. Am J Epidemiol 2005;161:1:1074-1080.
  9. Bhargava S.K., Sachdev H.S., Fall C.H. et al. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med 2004;350:9:865-875.
  10. Eriksson J.G., Forsen T., Tuomilehto J. et al. Early growth and coronary heart disease in later life: longitudinal study. BMJ 2001;322:7292:949-953.
  11. Leon D.A., Lithell H.O., Vagero D. et al. Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15 000 Swedish men and women born 1915-1929. BMJ 1998;317:7153:241-245.
  12. Lau C., Rogers J.M. Embryonic and fetal programming of physiological disorders in adulthood. Birth Defects Res C Embryo Today 2004;72:4:300-312.
  13. Huxley R.R., Shiell A.W., Law C.M. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J Hypertens 2000;18:7:815-831.
  14. Hales C.N., Barker D.J., Clark P.M. et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991;303:6809:1019-1022.
  15. Hales C.N., Barker D.J. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992;35:7:595-601.
  16. Boney C.M., Verma A., Tucker R., Vohr B.R. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 2005;115:3:e290-e296.
  17. Eriksson J.G., Forsen T., Tuomilehto J. et al. Effects of size at birth and childhood growth on the insulin resistance syndrome in elderly individuals. Diabetologia 2002;45:3:342-348.
  18. Widdowson E.M., McCance R.A. The effect of finite periods of undernutrition at different ages on the composition and subsequent development of the rat. Proc R Soc Lond B Biol Sci 1963;158:329-342.
  19. Cooper C., Cawley M., Bhalla A. et al. Childhood growth, physical activity and peak bone mass in women. J Bone Miner Res 1995;10:6:940-947.
  20. Cooper C., Walker-Bone K., Arden N., Dennison E. Novel insights into the patogenesis of osteoporosis: the role of intrauterine programming. Rheumatology (Oxford) 2000;39:12:1312-1315.
  21. Cooper C., Ericsson J.F., Foresen T. et al. Childhood growth trajectory as a strong determinant of later risk of hip fracture: a prospective study. Calcif Tiss Int 1999;64:Suppl 1:38.
  22. Ljunghall S., Johansson A.G., Burman P. et al. Low plasma levels of insulin-like growth factor 1 (IGF-1) in male patients with idiopathic osteoporosis. J Int Med 1992;232:1:59-64.
  23. Fall C., Hindmarsh P., Dennison E. et al. Programming of growth hormone secretion and bone mineral density in elderly men: a hypothesis. J Clin Endocrinol Metab 1998;83:1:135-139.
  24. Roseboom T.J., van der Meulen J.H.P., Ravelli A.C. et al. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol Cell Endocrinol 2001;185:1-2:93-98.
  25. Stettler N., Stallings V.A., Troxel A.B. Weight gain in the first week of life and overweight in aduldhood: a cohort study of European American subjects fed infant formula. 2005;111:15:1897-1893.
  26. Steinberg P. Speak you also: A survivor's reckoning. London: Allen Lane 2001.
  27. Гржибовский А.М., Бигрен Л.О., Tedder U.R. Внутриутробное программирование хронических заболеваний взрослых. Экол человека 2003;5:14-22.
  28. Barker D.J. In utero programming of chronic diseade. Clin Sci (Lond) 1998;95:2:115-128.
  29. Gluckman P.D., Hanson M.A., Pinal C. The developmental origins of adult disease. Matern Child Nutr 2005;1:3:130-141.
  30. Bateson P., Barker D., Clutton-Brock T. et al. Developmental plasticity and human health. Nature 2004;430:6998:419-421.
  31. Plagemann A. Perinatal programming and functional teratogenesis: impact on body weigh regulation and obesity. Physiol Behav 2005;86:5:661-668.
  32. Gluckman P.D., Hanson M.A. Living with the past: evolution, development, and patterns of disease. Science 2004;305:5691:1733-1736.
  33. Lisle S.J., Lewis R.M., Petry C.J. Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring. Br J Nutr 2003;90:1:33-39.
  34. Langley-Evans S.C., Welham S.J., Jackson A.A. Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci 1999;64:11:965-974.
  35. McMullen S., Gardner D.S., Langley-Evans S.C. Prenatal programming of angiotensin II type 2 receptor expression in the rat. Br J Nutr 2004;91:1:133-140.
  36. Welham S.J., Wade A., Woolf A.S. Protein restriction in pregnancy is associated with increased apoptosis of mesenchymal cells at the start of ret metanephrogenesis. Kidney Int 2002;61:4:1231-1242.
  37. Snoeck A., Remacle C., Reusens B., Hoet J.J. Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate 1990;57:2:107-118.
  38. Garofano A., Czernichow P., Breant B. Postnatal somatic growth and insulin contents in moderate or severe intrauterine growth retardation in the rat. Biol Neonate 1998;73:2:89-98.
  39. Burns S.P., Desai M., Cohen R.D. et al. Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation. J Clin Inv 1997;100:7:1768-1774.
  40. Barker D.J., Martyn C.N., Osmond C. et al. Growth in utero and serum chalesterol concentrations in adult life. BMJ 1993;307:6918:1524-1527.
  41. Barker D.J., Meade T.W., Fall C.H. et al. Relation of fetal and infant growth to plasma fibrinogen and factor VII concentration in adult life. BMJ 1992;304:6820:148-152.
  42. Hales C.N., Barker D.J. The thrifty phenotype hypothesis. Br Med Bull 2001;60:5-20.
  43. Plagemann A., Harder T., Rake A. Hypotalamic nuclei are malformed in weanling offspring of low protein malnourished rat dams. J Nutr 2000;130:10:2582-2589.
  44. Plagemann A., Harder T., Janert U. Malformations of hypothalamic nuclei in hyperinsulinemic offspring of rats with gestational diabetes. Dev Neurosci 1999;21:1:58-67.
  45. Levitt N.S., Lindsay R.S., Holmes M.C., Seckl J.R. et al. Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring in the rat. Neuroendocrinology 1996;64:6:412-418.
  46. Ward A.M., Syddall H.E., Wood P.J. et al. Fetal programming of the hypothalamic-pituitary adrenal (HPA) axis: low birthweight and central HPA regulation. J Clin Endocrinol Metab 2004;89:3:1227-1233.
  47. Langley-Evans S.C., Sherman R.C., Welham S.J. et al. Intrauterine programming of hypertention: the role of the renin-angiotensin system. Biochem Soc Trans 1999;27:2:88-93.
  48. Lesage J., Blondeau B., Grino M. et al. Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo-pituitary adrenal axis in the newborn rat. Endocrinology 2001;142:5:1692-1702.
  49. Simmons R.A., Templeton L.J., Gertz S.J. Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes 2001;50:10:2279-2286.
  50. Woods L.L., Ingelfinger J.R., Nyengaard J.R., Rasch R. Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediat Res 2001;49:4:460-467.
  51. Shams M., Kilby M.D., Somerset D.A. et al. 11Beta-hydroxysteroid dehydrogenase type 2 in human pregnancy and reduced expression in intrauterine growth restriction. Hum Reprod 1998;13:4:799-804.
  52. Holness M.J., Langdown M.L., Sugden M.C. Early-life programming of susceptibility to dysregulation of glucose metabolism and the development of Type 2 diabetes mellitus. Biochem J 2000;349:pt 3:657-665.
  53. Phillips D.I., Walker B.R., Reynolds R.M. et al. Low birth weight predicts elevated plasma cortisol concentrations in adults from 3 populations. Hypertension 2000;35:6:1301-1306.
  54. Sandhu M.S., Heald A.H., Gibson J.M. et al. Circulating concentrations of insulin-like growth factor-I and development of glucose intolerance: a prospective observational study. Lancet 2002;359:9319:1740-1745.
  55. Juul A., Scheike T., Davidsen M. et al. Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease: a population-based case-control study. Circulation 2002;106:8:939-944.
  56. Day I.N., Chen X.H., Gaunt T.R. et al. Late life metabolic syndrome, early growth, and common polymorphism in the growth hormone and placental lactogen gene cluster. J Clin Endocrinol Metab 2004;89:11:5569-5576.
  57. Goldberg A.D., Allis C.D., Bernstein E. Epigenetics: a landscape takes shape. Cell 2007;128:4:635-638.
  58. Newell-Price J., Clack A.J., King P. DNA mutilation and silencing of gene expression. Trends Endocrinol Metab 2000;11:4:142-148.
  59. Peterson C.L., Laniel M.A. Histones and histone modifications. Curr Biol 2004;14:14:R546-R551.
  60. Jaenisch R., Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003;33:Suppl:245-254.
  61. Pham T.D., MacLennan N.K., Chiu C.T. Uteroplacental insufficiency increases apoptosis and alters p53 gene mutilation in the full-term IUGR rat kidney. Am J Physiol Regul Int Comp Physiol 2003;285:5:R962-R970.
  62. Ke X., Lei Q., James S.J. et al. Uteroplacental insufficiency affects epigenetic determinants of chromatin structure in brains of neonatal and juvenile IUGR rats. Physiol Genomics 2006;25:1:16-28.

Views

Abstract - 886

Cited-By


PlumX

Dimensions


Copyright (c) 2010 Nagaeva E.V., Shiriaeva T.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies