A case of congenital hypothyroidism combined with sensorineural hearing loss (Pendred syndrome) caused by a TPO gene defect

Cover Page

Abstract


Congenital hypothyroidism is a genetically heterogeneous group of diseases caused by two mechanisms: gland dysgenesis and dyshormonogenesis. The disease pattern includes a number of syndromic forms, one of which is a combination of congenital hypothyroidism and sensorineural hearing loss (Pendred syndrome) initially associated with SLC26A4 gene defects. The article describes a patient with clinical manifestations of Pendred syndrome who was diagnosed with a TPO gene defect during a molecular genetic analysis using next generation sequencing (NGS). Therefore, a combination of congenital hypothyroidism and sensorineural hearing loss can have a different molecular basis. Our findings illustrate the value of NGS for genetic verification of the diagnosis.


Full Text

Врожденный гипотиреоз (ВГ) является одним из наиболее распространенных заболеваний эндокринной системы с частотой встречаемости 1 на 3000—4000 новорожденных [1]. В структуре ВГ, представляющего собой гетерогенную группу заболеваний, выделяют как изолированные поражения щитовидной железы (ЩЖ), так и синдромальные формы, характеризующиеся сочетанием гипотире оза с другой патологией. К числу последних относится синдром Пендреда (СП), впервые описанный в 1896 г. [2] и проявляющийся гипотиреоидным зобом и нейросенсорной тугоухостью. Проведенные спустя столетие молекулярно-генетические исследования показали, что в основе СП лежат дефекты гена SLC26A4, белковый продукт которого был назван пендрином [3, 4]. Последующие работы, включая и эксперименты на мышиных моделях, продемонстрировали, что сочетание ВГ с нейросенсорной тугоухостью может наблюдаться и при других формах гипотиреоза, что связано с критическим значением уровня тиреоидных гормонов для формирования внутреннего уха в процессе эмбриогенеза [5—8].

Нами изучена молекулярная основа ВГ у пациента с клиническими проявлениями СП. Использование секвенирования следующего поколения (NGS), при котором осуществляется анализ последовательности сразу нескольких генов-кандидатов, позволило установить, что заболевание связано не с дефектом пендрина, а с дефицитом тиреопероксидазы (ТПО).

Нами проведена оценка анамнестических, клинико-лабораторных данных и результатов инструментальных исследований пациента. Молекулярно-генетическое исследование проведено методом секвенирования следующего поколения (NGS). Использовалась разработанная в отделении наследственных эндокринопатий ФГБУ ЭНЦ панель праймеров Ion Ampliseq Custom DNA Panel («Life technologies», США), охватывающая кодирующие области следующих генов: TPO, PAX8, NKX2-5, IYD, SLC26A4, TG, GLIS3, FOXE1, NKX2-1, DUOX2, DUOX1, DOUXA2, TSHR, SLC5A5, TSHB, THRB, THR, UBR1, THRA, SLC16A2. Секвенирование осуществлялось на полупроводниковом секвенаторе PGM (Ion Torrent, «Life Technologies», США). Биоинформатическая обработка результатов секвенирования была проведена с помощью программного модуля Torrent Suite 4.2.1 (Ion Torrent, «LifeTechnolo gies», США) и пакета программы Annovar (версия 2014Nov12) (http:/www.openbioinformatics.org/annovar/) [9]. Для подтверждения выявленных изменений в гене TPO проведено секвенирование соответствующих участков по Сенгеру с использованием специфических праймеров.

Описание клинического случая

Пробанд от восьмой беременности (первая и вторая беременности — медицинский аборт, с третьей по седьмую беременности — самопроизвольные аборты), протекавшей на фоне токсикоза первой половины. При проведении планового ультразвукового исследования на сроке 30 нед у плода выявлено увеличение ЩЖ. На 31-й неделе гестации уровень ТТГ в пуповинной крови превышал 200 мЕд/л. Семейный анамнез по эндокринопатиям не отягощен.

На 40-й неделе гестации проведено родоразрешение путем кесарева сечения. При рождении масса тела 4100 г, длина 55 см, оценка по шкале Апгар 4/6 баллов. При рождении у ребенка отмечалась деформация шеи за счет увеличения объема щитовидной железы (гигантский зоб). Переведен в отделение реанимации (15 сут на ИВЛ) в связи с врожденной пневмонией, отечным синдромом, нарушением мозгового кровообращения, синдромом дыхательных расстройств.

В возрасте 4,5 года в связи с задержкой речевого развития, снижения слуха ребенок обследован у сурдолога, выявлена двусторонняя нейросенсорная тугоухость 2—3-й степени. Пациент имеет логопедические расстройства, сходящееся содружественное косоглазие; умственную отсталость легкой степени.

С первых месяцев жизни пациент наблюдался в ФГБУ ЭНЦ. Со второго дня жизни назначена заместительная терапия левотироксином, которую пациент в последующем получал в возрастающих дозах под контролем уровня ТТГ. Общий объем ЩЖ в 1-й месяц составлял 40 мл. На фоне проводимой терапии сначала отмечалось уменьшение размеров ЩЖ, однако с 8-летнего возраста объем ЩЖ начал прогрессивно нарастать, появились узловые образования в обеих долях.

При плановом обследовании в ФГБУ ЭНЦ в возрасте 16 лет: рост 196,2 см (SDS =+3,4), масса тела 71,5 кг (SDS ИМТ =–0,73). При осмотре отмечается деформация шеи за счет значительного увеличения ЩЖ. Пальпаторно: ЩЖ увеличена (2-я степень по ВОЗ), умеренной плотности, бугристая, безболезненна, в левой доле пальпируется узловое образование размером до 2,5 см.

Гормональный профиль (на фоне приема левотироксина 150,0 мкг/сут): ТТГ 1,3 мМЕ/л (референсные значения 0,43—4,2), св.Т4 12,75 пмоль/л; кальцитонин 1,0 пг/мл (референсные значения 0,4—18,9).

При ультразвуковом исследовании ЩЖ выявлены эхографические признаки двустороннего многоузлового зоба: общий объем 122 мл (объем правой доли 64,15 мл, левой доли 58,76 мл, толщина перешейка 1,75 см), эхогенность умеренно снижена; множественные образования округлой формы, пониженной и нормальной эхогенности, максимальным размером до 2,8×1,7×2,7 см (в нижней трети левой доли). При ЦДК васкуляризация не изменена. Региональные лимфатические узлы не изменены.

По результатам тонкоигольной аспирационной биопсии выявлены признаки коллоидного зоба с различной степенью пролиферации и регрессивными изменениями.

Пациенту проведена экстрафасциальная тире оидэктомия. Послеоперационные осложнения отсутствовали. При гистологическом исследовании: картина доброкачественного образования ЩЖ. В препаратах из перешейка обнаружено два очага опухолевого роста солидно-альвеолярного и микрофолликулярного строения. Бо`льшая из опухолей окружена тонкой фиброзной капсулой без признаков инвазии. В меньшей опухоли собственная капсула отсутствует, и ее элементы располагаются среди гиперплазированной ткани ЩЖ. Отмечается высокая концентрация клеток опухолей, очаговое просветление ядерного хроматина и напластования ядер. Фигуры митоза, некроз опухолей не обнаружены.

При молекулярно-генетическом исследовании на панели генов «Гипотиреоз» выявлена составная гетерозиготная мутация в гене TPO: c.265C>T p.R89X (замена цитозина на тимин в положении 265, приводящая к образованию стоп-кодона) и c.1181_1184dupCGGC p.A397PfsX76 (дупликация 4 пар оснований в экзоне 8 со сдвигом рамки считывания).

Обсуждение

В 1896 г. английский врач Воген Пендред (Vaughan Pendred) описал семейный случай тугоухости в сочетании с увеличением ЩЖ, и в дальнейшем данный симптомокомплекс получил название синдрома Пендреда (СП) [2]. Этиопатогенез СП был изучен в конце прошлого столетия, когда L. Everett и соавт. было доказано, что заболевание сцеплено с геном SLC26A4 [3], и позднее, в 1999 г., был охарактеризован кодируемый данным геном белок пендрин [4].

Пендрин состоит из 780 аминокислот и относится к ионным транспортерам. Он экспрессируется преимущественно в тиреоцитах, в меньшей степени — в клетках внутреннего уха и в почках. В щитовидной железе пендрин необходим для регуляции транспорта йодида через апикальную мембрану в просвет фолликула, во внутреннем ухе — для поддержания баланса ионов хлорида и бикарбоната [4].

К настоящему времени в гене SLC26A4 описано более 160 мутаций [10]. Спектр фенотипических проявлений варьирует от наличия классического СП (врожденный гипотиреоз, зоб и нейросенсорная тугоухость) до несидромальной потери слуха [11].

Ген TPO (OMIM # 606765) был клонирован в 1987 г. [12]. Кодируемый геном одноименный белок состоит из 933 аминокислот и представляет собой димер, мономеры которого соединены дисульфидными связями. Каждый мономер содержит гемсвязывающий домен, три внеклеточных домена, трансмембранную спираль и короткий цитоплазматический «хвост» [13]. ТПО катализирует перекисное окисление йодида, йодирование тирозина с последующим соединением остатков йодтирозина и образованием активных йодтиронинов (тироксина и трийодтиронина) [14].

Инактивирующие мутации в гене TPO приводят к развитию врожденного гипотиреоза в сочетании с увеличением размеров ЩЖ. Первое описание пациента с врожденным гипотиреозом, обусловленным мутацией гена TPO, было опубликовано в 1992 г. M. Abramowicz и соавт. [15]. На сегодняшний день описано более 60 мутаций в гене TPO, большинство из которых локализованы в экзонах 7, 8 и 9, кодирующих гемсвязывающий домен белка [16].

Клинический случай сочетания тяжелого врожденного гипотиреоза и снижения слуха у человека, обусловленный составной гетерозиготной мутацией Q235X/Y453D в гене TPO, был впервые описан в 2006 г. N. Pfarr и соавт. [17]. Следует отметить, что механизмы формирования нейросенсорной туго ухости при мутациях в генах TPO и SLC26A4 различны. Инактивирующие мутации гена SLC26A4 приводят к изменению баланса ионов во внутреннем ухе, повышению осмотического давления, вследствие чего развивается мальформация в виде недоразвития улитки и расширения вестибулярного акведука [4]. Развитие тугоухости при мутациях гена TPO связано с дефицитом тиреоидных гормонов в эмбриональном и неонатальном периодах, следствием чего является замедление формирования структур внутреннего уха [8].

В 2013 г. K. Johnson и соавт. оценили влияние мутаций в гене TPO на развитие внутреннего уха. Для исследования были выведены две линии мутантных мышей (Tpo tee и Tpo tee-2J). Применялся метод определения коротколатентных слуховых вызванных потенциалов. Пороги слуха у гомозиготных мутантных мышей (tee/tee и tee-2J/tee-2J) были резко повышены (60—70 дБ). Гистологические исследования позволили установить, что нарушение слуха у мутантных мышей связано с изменением размеров и формы текториальной мембраны и отставанием в развитии архитектоники внутреннего уха [8].

У нашего пациента выявлена составная гетерозиготная мутация p.R89X/p.A397PfsX76 в гене TPO. Нонсенс-мутация c.265C>T, расположенная в экзоне 4, приводит к образованию стоп-кодона в положении 89 и выраженному укорочению белка ТПО с полной потерей гемсвязывающего домена. Вторая мутация c.1181_1184dupCGGC расположена в экзоне 8. Результатом такой мутации также является образование преждевременного стоп-кодона с потерей части гемсвязывающего домена. Таким образом, можно предполагать, что сочетание данных мутаций у пробанда приводит к полной потере функциональной активности тиреопероксидазы, чем объясняется столь тяжелое течение заболевания.

Заключение

Представленные результаты обследования ребенка с клиническими проявлениями синдрома Пендреда свидетельствуют о генетической гетерогенности данного состояния и иллюстрируют возможности использования современных методов молекулярно-генетического анализа (NGS).

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Согласие пациента. Пациент добровольно подписал информированное согласие на публикацию персональной медицинской информации в обезличенной форме.

Источники финансирования. Работа выполнена при содействии Фонда поддержки и развития филантропии «КАФ».

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Участие авторов: Макрецкая Н.А. — концепция и дизайн исследования, анализ полученных данных, проведение молекулярно-генетического исследования, написание текста; Безлепкина О.Б. — сбор материала; Чикулаева О.А. — сбор материала; Васильев Е.В. — проведение молекулярно-генетического исследования; Петров В.М. — проведение молекулярно-генетического исследования; Дедов И.И. — концепция и дизайн исследования; Тюльпаков А.Н. — концепция и дизайн исследования, анализ полученных данных, проведение молекулярно-генетического исследования.

Благодарности. Авторы выражают благодарность Фонду поддержки и развития филантропии «КАФ» за помощь в проведении исследования.

About the authors

Nina A. Makretskaya

Endocrinology Research Centre

Author for correspondence.
Email: makretskayan@gmail.com
ORCID iD: 0000-0003-0412-7140
SPIN-code: 4467-7880

Russian Federation, 11, Dm. Ulyanova street, Moscow, 117036

MD

Olga B. Bezlepkina

Endocrinology Research Centre

Email: olgabezlepkina@mail.ru
ORCID iD: 0000-0001-9621-5732
SPIN-code: 3884-0945

Russian Federation, 11, Dm. Ulyanova street, Moscow, 117036

MD, PhD, Professor

Olga A. Chikulaeva

Endocrinology Research Centre

Email: chikulaeva.olga@gmail.com
ORCID iD: 0000-0002-4743-4661

Russian Federation, 11, Dm. Ulyanova street, Moscow, 117036

MD, PhD

Evgeny V. Vasilyev

Endocrinology Research Centre

Email: vas-evg@yandex.ru
ORCID iD: 0000-0003-1107-362X
SPIN-code: 5767-1569

Russian Federation, 11, Dm. Ulyanova street, Moscow, 117036

PhD

Vasiliy M. Petrov

Endocrinology Research Centre

Email: petrov.vasiliy@gmail.com
ORCID iD: 0000-0002-0520-9132
SPIN-code: 4358-2147

Russian Federation, 11, Dm. Ulyanova street, Moscow, 117036

PhD

Ivan I. Dedov

Endocrinology Research Centre

Email: dedov@endocrincentr.ru
ORCID iD: 0000-0002-8175-7886
SPIN-code: 5873-2280

Russian Federation, 11, Dm. Ulyanova street, Moscow, 117036

MD, PhD, Professor

Anatoly N. Tiulpakov

Endocrinology Research Centre

Email: anatolytiulpakov@gmail.com
ORCID iD: 0000-0001-8500-4841
SPIN-code: 8396-1798

Russian Federation, 11, Dm. Ulyanova street, Moscow, 117036

MD, PhD

References

  1. Devos H, Rodd C, Gagne N, et al. A search for the possible molecular mechanisms of thyroid dysgenesis: sex ratios and associated malformations. J Clin Endocrinol Metab. 1999;84(7):2502-2506. doi: 10.1210/jcem.84.7.5831.
  2. Pendred V. Deaf-Mutism and Goitre. The Lancet. 1896;148(3808):532. doi: 10.1016/s0140-6736(01)74403-0.
  3. Everett LA, Glaser B, Beck JC, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet. 1997;17(4):411-422. doi: 10.1038/ng1297-411.
  4. Everett LA. A family of mammalian anion transportersand their involvement in human genetic diseases. Hum Mol Genet. 1999;8(10):1883-1891. doi: 10.1093/hmg/8.10.1883.
  5. Christ S, Biebel UW, Hoidis S, et al. Hearing loss in athyroid pax8 knockout mice and effects of thyroxine substitution. Audiol Neurootol. 2004;9(2):88-106. doi: 10.1159/000076000.
  6. O’Malley BW, Jr., Li D, Turner DS. Hearing loss and cochlear abnormalities in the congenital hypothyroid (hyt/hyt) mouse. Hear Res. 1995;88(1-2):181-189.
  7. Johnson KR, Marden CC, Ward-Bailey P, et al. Congenital hypothyroidism, dwarfism, and hearing impairment caused by a missense mutation in the mouse dual oxidase 2 gene, Duox2. Mol Endocrinol. 2007;21(7):1593-1602. doi: 10.1210/me.2007-0085.
  8. Johnson KR, Gagnon LH, Longo-Guess CM, et al. Hearing impairment in hypothyroid dwarf mice caused by mutations of the thyroid peroxidase gene. J Assoc Res Otolaryngol. 2014;15(1):45-55. doi: 10.1007/s10162-013-0427-7.
  9. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. doi: 10.1093/nar/gkq603.
  10. Pendred/BOR Homepage [Internet]. Available on URL: http://www.healthcare.uiowa.edu/labs/pendredandbor/
  11. Tsukamoto K, Suzuki H, Harada D, et al. Distribution and frequencies of PDS (SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct: a unique spectrum of mutations in Japanese. Eur J Hum Genet. 2003;11(12):916-922. doi: 10.1038/sj.ejhg.5201073.
  12. Kimura S, Kotani T, McBride OW, et al. Human thyroid peroxidase: complete cDNA and protein sequence, chromosome mapping, and identification of two alternately spliced mRNAs. Proc Natl Acad Sci U S A. 1987;84(16):5555-5559. PMC298901.
  13. Banga JP, Mahadevan D, Barton GJ, et al. Prediction of domain organisation and secondary structure of thyroid peroxidase, a human autoantigen involved in destructive thyroiditis. FEBS Lett. 1990;266(1-2):133-141.
  14. Cetani F, Costagliola S, Tonacchera M, et al. The thyroperoxidase doublet is not produced by alternative splicing. Mol Cell Endocrinol. 1995;115(2):125-132. doi: 10.1016/0303-7207(95)03680-6.
  15. Abramowicz MJ, Targovnik HM, Varela V, et al. Identification of a mutation in the coding sequence of the human thyroid peroxidase gene causing congenital goiter. J Clin Invest. 1992;90(4):1200-1204. doi: 10.1172/JCI115981.
  16. Ris-Stalpers C, Bikker H. Genetics and phenomics of hypothyroidism and goiter due to TPO mutations. Mol Cell Endocrinol. 2010;322(1-2):38-43. doi: 10.1016/j.mce.2010.02.008.
  17. Pfarr N, Borck G, Turk A, et al. Goitrous congenital hypothyroidism and hearing impairment associated with mutations in the TPO and SLC26A4/PDS genes. J Clin Endocrinol Metab. 2006;91(7):2678-2681. doi: 10.1210/jc.2006-0142.

Supplementary files

There are no supplementary files to display.

Statistics

Views

Abstract - 1820

PDF (Russian) - 236

Remote (Russian) - 180

Cited-By


PlumX

Dimensions


Copyright (c) Makretskaya N.A., Bezlepkina O.B., Chikulaeva O.A., Vasilyev E.V., Petrov V.M., Dedov I.I., Tiulpakov A.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies